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Unique physical characterisation of Haag-Ruelle scattering 
states 

W Lucke 
Institut fur Theoretische Physik der Technischen Universitat Clausthal, D-3392 Clausthal- 
Zellerfeld, West Germany 

Received 12 October 1981, in final form 17 September 1982 

Abstract. A physically evident requirement on asymptotic product states is formulated 
in a mathematically precise way and shown to fix the S-matrix uniquely for relativistic 
field theories of short-range interactions. 

1. Introduction 

Let 2 be the Hilbert space of a given quantum theory. The basic problem of fixing 
a corresponding scattering theory is well known to be the identification of states 
describing certain asymptotic physical situations for large positive (or negative) times. 
It is generally believed that the asymptotic scattering configurations of pure states 
may be indexed by vectors @' of the Hilbert space 2' of a suitable (pseudo)free 
theory. More precisely, one usually assumes existence of two isometric mappings 
V,,,, Vi, from X' into 2 such that VOut@O (respectively Vinoo) is a Heisenberg state 
vector describing a physical situation essentially the same for large positive (respec- 
tively negative) times as that indexed by a'. Thus, given a system in a state correspond- 
ing to the incoming configuration indexed by the unit vector @', the probability for 
detecting it in a state corresponding to the outgoing configuration indexed by the unit 
vector V' is 

W(@'-+ qo) = I( VOUtY0I Vi,@')/* 

where ( 1 ) denotes the inner product of 2. The S-matrix operator in the Heisenberg 
picture is S = Vi, Vi-!t, hence 

( Voutq'I Vino') = ( Voutq'ISVout@') 

for all @', V'E x'. 
The problem is how to specify physically the isometric operators Vout and Vi,. 
In the Haag-Ruelle scattering theory (see Reed and Simon 1979, and references 

therein) isometric operators V,,, and Vi, are specified mathematically, satisfying the 
additional requirement of relativistic covariance (Streater 1967): 

(1) U ( A ,  a 1 Vout (in) = Vout (inlUo(A, a )  

where U ( A ,  a )  and Uo(A,  a )  are (strongly) continuous unitary representations of the 
restricted PoincarC group 9: in %' and 2' respectively, if we consider only Bose 

@ 1983 The Institute of Physics 615 



616 W Liicke 

fields. However, no stringent physical justification for this identification of scattering 
states is given. 

The main purpose of the present paper is to fill this gap. Introducing the notion 
of asymptotic localisation? of operator sequences, we shall be able to formulate 
precisely a natural physical criterion fixing the choice of Vout(in) uniquely. Of course, 
the correct choice will turn out to be that made by Haag (1958). 

The techniques used here may be considered as a systematic development of those 
introduced by Hepp (1964, 1965) for the analysis of non-overlapping scattering states. 

2. General framework and basic strategy 

For convenience, let us consider the simple case where the free field theory describing 
the scattering configurations is that of stable neutral scalar particles of a single type 
with (physical) mass m > 0. Then X o  is the corresponding Fock space with the usual$ 
associative symmetric tensor product 0,: 

where 
xo=X:oX:ox:o.. . 

for n = 0 
L2(R3) for n = 1 

for n > 1 r X; 0,. . .os X: 
denotes the free n-particle subspace. 

mass-gap condition that would be implied by asymptotic completeness: 
We do not require asymptotic completeness but assume the physical spectrum and 

(2) 2Y = E({O} U M, U V,)X 
where E denotes the unique projector-valued measure on R4 with$ 

By M ,  we denote the one-particle mass shell 

(p E [w4: p 2  = m2, > 01 
and by V ,  the free multi-particle spectrum 

{ p  E R4: p 3 4m ’, p o  > 0). 

Obviously, without loss of generality, we may assume 

x: = E({O})Z 

U ( A ,  a)@ = U o ( A ,  a)@ 

Xy = E(M,)X 
and 

for@EX:oXy.  

t Perhaps one should point out that the localisation properties exploited in the present paper, in contrast 
to those studied by Haag and Swieca (1965), are certainly not suited for an investigation of asymptotic 
completeness in quantum field theory. 
$ For instance, if no denotes the free vacuum state vector and Ab-’(cp.) the negative-frequency part of 
the free scalar field smeared by the test function pi, then (Ab-‘(rpl)fLo) 0.. . .Os (Ab-’(cp,)flo) = 
Ab-’(cpl). . . Ak-’(cp,)fLn and fl,@,@o=@o@, fLo=@Ofor all @‘E 9. 
!We use natural units in which c = h = 1. 
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Then Vout and Vi, are fixed on 2: and X? up to an unessential phase factor. Let us 
take the natural choice 

Vout (in)@ = @ for @ E X: BX?. (6) 

( Vout (in)@') 0, (Vout (in)*') E Vout 0 s  (7) 

Thus, due to isometry, the whole problem reduces to inductive determination of 

for suitable @', *'E X?, Xi, X:, . . . . This means that we have to determine the 
products 0, for a sufficiently large class of states from physically evident properties, 
which have to be formulated in a mathematically precise way. 

Now, 0, and Vout (respectively 0- and Vi,) are defined such that 
( Vout@?) 0, ( Vout@:) (respectively ( Vin@?) 0- (Vin@:)) describes a physical situation 
essentially the same for large positive (respectively negative) times as that indexed by 
the free Fock vector @? 0, @:. Therefore, the relevant physical properties of 0, 
(respectively a-) may be read off from those of the free product 0, (cf Froissart and 
Taylor 1967). In order to be more explicit let 07 be a free nj-particle state, well 
localised at time zero ( j  = 1,2) .  Denote by K j  the velocity cone of @7, i.e. the closure 
of the set of all four-vectors of the form (t, tu), where t is an arbitrary time and U a 
three-velocity allowed for at least one of the free particles described by @:. Obviously, 
with increasing (Euclidean) distance from the origin the probability of finding any of 
the particles outside K j  will rapidly tend to zero (at least, if the probability distribution 
for the momenta is smooth). In other words, the physical situation described by @: 
far from the origin outside Kj is essentially that of the vacuum. Recall that @? 0, @: 
describes the uncorrelated joint presence of both systems corresponding to 07 and 
@:, Therefore, if @? and 0; are asymptotically non-overlapping, i.e. if K1 n Kz. = {0}, 
the asymptotic physical situation described by @? 0, @: is the following: with increasing 
(Euclidean) distance from the origin the physical situation outside K1 (respectively 
K z )  approaches rapidly that described by @: (respectively @?). 

This has obvious consequences for the expectation values of local measurements: 
Let 0 be a space-time region for which it is impossible to send a signal from 6 to Kz 
and back again to 6. Then due to Einstein causality, measurements within 0 depend 
only on the physical situation outside Kz. Consequently, if 6 is very far from the 
origin, measurements within 0 should yield essentially the same results for @? 0, @; 
and 0;. Of course, the measurements within 6 must not amplify the weak influence 
of @: outside K 2  too much. 

For ( V o u t ( i n ) @ I )  0, (Vout(in)@:), describing the same asymptotic physical situation 
for time t -* fa as @? 0, @:, these considerations show the following: Let 6 be a 
space-time region as considered above with the additional property f x o  > 0 for x E 6. 
Then 6, = A 0  is moving into the future (respectively past) very far from K Z  for A + +a. 
Therefore the expectation values for a sequence of self-adjoint operators AA in X 
are the same for (Vout ( in)@?)  0, (Vout(in)@Z) and Vout(in)@l in the limit A +a, i.e. we 
have the asymptotic condition 

0 

0 0 

provided that the following three conditions are fulfilled. 
0 0 (i) (Vout(in)@l) 0, (Vout(in)@l) is in the domain of AA for all A.  
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(ii) AA corresponds to a measurement which can essentially be performed within 
0, in the limit A + 00. 

(iii) Small changes of the physical situation inside the causal completion of OA are 
not amplified too much in the limit A +a. 

While it is physically evident that the above asymptotic condition should hold, it 
is not at all obvious how it determines the product 0, (-). How this works is the main 
problem of the present paper and will be considered in § 5 .  The solution depends 
crucially on very special properties, called K-approachability, of a sufficiently large 
class of scattering states. These properties are analysed in § 4. In order to make the 
above asymptotic condition precise, we have to specify sequences of observables AA, 
said to be asymptotically localised in (TA, for which conditions (i)-(iii) are expected to 
hold. In order to yield (in § 3) a notion of asymptotic localisation which undoubtedly 
serves the purpose outlined above, let us assume the theory with interaction to be of 
Wightman type (Streater and Wightman 1964). Thus we assume the existence of a 
quantum field A(x)  and a dense linear subset D of 2Y fulfilling the following require- 
ments. 

WI. 2Y: CD. 
W2. V(A, a ) D  cD for all (A, a )  E PI .  
W3. For every tempered test functiont cp E 9 ( R 4 )  the 'smeared field operator' 

A(cp)=jdxA(x)cp(x) is given as a linear (unbounded) operator in 2Y, defined on D. 
W4. A(cp)D cD for all cp E 9 ( R 4 ) .  
w5. ~ ( c p * )  ~ ~ ( c p ) *  for all cp EY(R~) .  
W6. The formal expectation values (@lA (x)@) are tempered Schwartz distributions 

for @ E D ;  i.e. cp + (cDIA(cp)@) is a continuous linear mapping from 9(R4)  into @. 
W7. V(A, a )A(x)U(h ,  a)-' =A(Ax + a )  in the sense of distributions, for all 

(A, a )  E 9;. 
W8. [A(x), A(y)]- =A(x)A(y)  -A(y)A(x)  = 0 in the sense of distributions, if$ 

x x y .  
Finally, let us choose a unit U U C K K ~  vector fl E 2Y: and assume fl to be cyclic with 

respect to the set of all smeared field operators. 

3. Asymptotic localisation 

By @(0), 0 an open subset of R4, let us denote the smallest * algebra with unit$ 1 / 'D 
containing all operators of the form 

2 5 dxl . . , dxjA(x1). . . A(xj)cpj(xl, . . , x,) 
i = l  

where the (pi E 9(R4') vanish outside 6 x . . . x 0, and n is an arbitrary ositive integer. 

considered to be measurable within the space-time region 0. In the spirit of this 
interpretation we introduce the following definitions. 

Observables corresponding to (essentially self-adjoint) elements of J (0) are usually 

t We use Schwartz's (1966) notation for test function spaces. 
$ We write x X y for the statement that x is space-like with respect to y .  Accordingly, if 01 and 0 2  are 
subsets of R4, we write O1 X 0 2  for the statement that x X y for every pair ( x ,  y ) ~  61 x 0 2 .  

5 As usual, we denote by A /'D the restriction of the operator A to the domain D. 
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Definition 1. Let {OA}A>o be a sequence of open subsets of R" and let { ( P ~ } ~ , ~  be a 
sequence of test functions in Y ( R " ) .  Then we say that cpA is asymptotically localised 
in Oh, iff the following two conditions are fulfilled. 

(i) All Schwartz norms of pA are bounded polynomially in A ;  i.e. for every 
n1€N={1,2 ,3 ,  . . . }  there i san2ENsuchtha t  

I ~ ~ A I ~ ~ , w ~ ~ < ~ ~ + A " ~  for all A > 0 

where we use the notation 

n 2 112 where l\,yll E [(,y')2 + . , . + (x ) ] , for arbitrary cp E Y ( R " ) ,  k E N and M c R". 
(ii) ~ u p A > O ( ~ + ~ ) n 1 ~ ~ A ~ n 2 , ~ ~ ~ ~ ~ < ~  for all nl, n 2 ~ N .  

An important example for definition 1 is given by 

Lemma 1. Let cp E Y ( R ~ )  and let f be a smooth positive-frequency solution of the 
Klein-Gordon equation; i.e. 

with PE .9'P(R3). Then, for every E > 0, the sequence of test functions 

cp ' - ' ( x )  3 1 dy cp(x - y l f ( y )  
y " = * A  

(9) 

is asymptotically localised in? 0: = V,,({X E K f :  x o  = *A}), where Kf  denotes the veloc- 
ity cone o f f ;  i.e. 

K f = { p t : f ( p )  # 0,  p o  = ( p 2 +  m2)1'2, t E R'}. 

Proof. Note that the inequality 

holds for arbitrary cp E Y(R"), 7 E R" and j ,  k E N. If this is applied to (9) it yields 

+ We use standard notation. For example, let A > 0, G c R4, G ' c  R4, (~i, a )  E PI, Then 

U,,(G) = {x € R 4 :  1Ix - x'11i A for some x '  E G} 

fi =closure of G 

R 4 \ G = { x ~ R 4 :  x G G }  

A G = { x ~ R ~ : x = A x ' f o r s o m e x ' ~ G }  

.\G f a  = { x  E R4: x = . t x ' * a  for some X ' E  G} 

G * G ' =  U ( G k a j .  
i i E G  
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for every OA c R4 and all j ,  k E N. Therefore, since 

SUB I lxl l" l f (x) l<~ 
xeR \Kf 

holds for all n E N (Ruelle 1962, Lucke 1974), there is a rapidly decreasing sequence 
of complex numbers cA fulfilling the inequality. 

for all A > 0. Thus, choosing OA = 0, we see that condition (i) of definition 1 is fulfilled. 
On the other hand, choosing OA =Of and j large enough, we see also condition (ii) 
to be fulfilled. 

Definition 2. Let {OA}A>o be a sequence of open subsets of R4 and let {BA}A>o be a 
sequence of @(R4) operators. Then we say that BA is asymptotically localised in Oh, 
iff there are complex numbers cA, test functions and a positive integer n such that 
the following three conditions are fulfilled. 

(9 

BA = C A  + f 1 dxl dx,A(X1) * -A(x~)(D~,A(xI ,  9 ,x i )  
j = l  

for all A > n. 
(ii) /cA 1 < n + A n  for all A > n. 
(iii) For every fixed j ,  the test functions ( p j , A  are asymptotically localised in 0, x , , , x 

OA c [w4'. 

Definition 2 is intended to be such that, if BA is asymptotically localised in OA, 
then, for large A > 0, we may consider BA to be essentially like an element of @(OA). 
What this precisely means is the content of the following simple lemma that we state 
without proof. 

Lemma 2. Let F > 0 and let Bj,A be asymptotically localised in Oj,A, j = 1, , . . , n. 
Then there are sequences of operators Bl,A E @(UF(Oj,A)) such thatt 
B1,A. . . Bn,A@ Bi,A. . Bk,A@ for all @ E  D. Here, for each j with Bj,A E @ ( o j , A )  we 
may choose B;,A = Bj,A. 

W8 is well known to imply that the elements of @(O) commute with those of 
@(Of), if 0 X 0'. Thus, we have the following corollary, 

Corollary. Let E > 0 and let Bj,A be asymptotically localised in Oj,A for j = 1, . , , ,4. If 
0 2 . A  X UsA(O3,A) for all A > 0, then 

B I , A B ~ , A B ~ , A B ~ , A  @ ,Tm B I , A B ~ , A B ~ , A B ~ , A @  

for all CP E D. 

tion. We list only a few. 

:If  
for the statement that limA+m A"/@, -@:!= 0 holds for all n E N ,  

One can easily prove several useful properties of the notion of asymptotic localisa- 

and {@;}A,~ are sequences of vectors in a Hilbert space with norm 1 . 1 ,  we write @, = @; 
A-m 
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ALO. Given any sequence of open subsets OA of R4, BA 1 /'D is asymptotically 
localised in OA. 

A L l .  Let (A, a )  E 9': and let BA be asymptotically localised in BA. Then B:  = 
U(A,  a)BAU(A, a)-' is asymptotically localised in 6, = ABA +a. 

AL2.  If Bi,A is asymptotically localised in Oi,, for j = 1,2 ,  then BA = B l , A B z , A  as 
well as B ;  S B ~ , ~  +B2,A is asymptotically localised in BA ~ 0 1 , A  U 62,A.  

AL3.  If BA is asymptotically localised in I!?,, then so is B? 1 D. 
AL4.  If BA is asymptotically localised in OA, then so is B: =P(A)BA for every 

AL5.  If BA is asymptotically localised in I!?,,, then B ;  = B g ( A )  is asymptotically 
polynomial P(A) .  

localised in 0; =0,,,, for every positive function g ( A )  fulfilling 

lim A - " g ( A )  = lim A""/g(A) = 0 for some n E N. 
A - m  A +m 

AL6.  Let Bj,A be asymptotically localised in Oi,, for j = 1, . . . , n and let @ E D ;  
then IIBl,crl . . . B,,An@I( is polynomially bounded in A I ,  . . . , A, simultaneously for 
sufficiently large A I ,  . . . , A,. 

For arbitrary B E @(Lit4) and cp E . Y ( R ~ )  we denote by B(cp) the unique element of 
B (iw4) fulfilling 

B(cp)@= I dxcp(x)U(l, x )BU( l ,  x)-'@ 

for all @ED, Then, by arguments similar to those used in the proof of lemma 1, we 
also get 

AL7.  Let B E .@(R4), let E > 0 and let the S ( R 4 )  functions qA be asymptotically 
localised in 0,. Then the @(R4) operators B ( q A )  are asymptotically localised in USA (Or). 

4. Haag-Ruelle-Hepp scattering states 

As we shall see below (lemma 3 and proof of lemma 5 ) ,  the scattering states of the 
Haag-Ruelle-Hepp theory (Hepp 1964, 1966) are constructed by means of operator 
sequences of the following type. 

Definition 3. Let K be a closed cone, and let 2 be a space-like hyperplane in R4. A 
sequence { B A } A > o  t 9 (R4) is called a (K, 2)  sequence, iff the following three conditions 
are fulfilled. 

(i) For every E > 0, BA is asymptotically localised in UEA (K n A 2).  

(ii) There is a vector @E 5V with BAn = 0. 

(iii) B : B ~ ~  = (nlB:~~n)n. 
A - 0 3  

A-w 

Lemma 3. Let K1,. . . , K,, be closed cones with K in  Kk = {0} for different j ,  k E 
(1, . . . , n } ,  let I; be a space-like hyperplane not containing the origin and let {Bj,A}A>o 
be a (Ki, I;) sequence for j = q ,  . . . , n. Then {BA = B I , ~ .  . . B n , A } ~ > ~  is a (KI v . .  . U 

K,, E) sequence. 
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Proof. Obviously, it is sufficient to  prove the lemma for the special case n = 2:  condition 
(i) of definition 3 is a direct consequence of AL2. In order to prove condition (ii) let 
us choose some E > 0, small enough to guarantee K1 n ( 1  + E 1)X to be space-like with 
respect to KZ n(1 + E Z ) X  for all E ~ ,  E Z E  [0, E ) .  Moreover, let us choose a sequence 
sA € [ A ,  ( ~ + E ) A )  such that 

Since condition (ii) of definition 3 is fulfilled for Bz,A, we conclude with AL3, AL6 
and Schwarz’s inequality that 

B1,s,B2.sAfi ATm B1,sAB2.~fi* 

By AL5 and the corollary we see that 

B I , ~ , B Z . A ~  A -00 B ~ , A B I , S , ~ .  

Repeating these arguments, we get 

B2,rB1,sAn ATm B ~ , A B I . A ~  

Putting all the pieces together we get 

which implies coridition (ii) of definition 3. 
In order to prove (iii), note that, by AL3 and the corollary, we have 

( B I , A B ~ , A  )*BI,ABz,A ATm BT,ABI.AB~,ABz,A n. 

which implies condition (iii) of definition 3 for BA = B1,ABz.A. 

Definition 4. Let @E X and let K be a closed cone. Then we say that @ is K- 
approachable, iff for every space-like hyperplane Z with Z n K C  (0) there is a (K, X) 
sequence {BA}A>o with 

Let us note that W7 has the following simple consequence (cf proof of relation 
(22) below): 

= limA+m BAn. 
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Lemma 4. Let A be a closed subset of R4 and let & E D  n E(A)D. Then? 

B(cp )&~E(A+supp4)D 

for all B E @(R4) and all cp E 9(R4). 

Now, the basis of our scattering formalism is the following. 

Lemma 5. Let M c M, and let O be a one-particle state vector of the form O = Bfl E 
E(M)D,  with B E @(R4). If K is a closed cone with apex at the origin, containing 
M U -M in its interior, then O is K-approachable. 

Proof. Let X be an arbitrary space-like hyperplane intersecting the open future 
(respectively past) light cone. Then we may choose a positive number r and a restricted 
Lorentz transformation A with 

(10) 

If n, k are arbitrary non-negative integers with n s k, then every (2 E Y ( R k )  may 

4 0  r A X = L = { x E R  :fx =l}. 

be written in the form 

withLEY(Rk),g'EY(Rn) a n d j d q ' .  . . d q n g ( q l , .  . . , q n ) = l  (Liicke 1974,lemma 1). 
Hence, by W7 and invariance of s1, the vector O'= U ( A ,  0)O may be written as 
O' = <(qi)s1 with 2 E @(R4) and cp: of the form (9). Applying lemma 4 to the special 
case O = f l ,  A={O} and recalling (2) as well as O ' E E ( A M ) D ,  we see that we may 
choose q such that 

supp 4 c { p  E R ~ :  p o  > 0 ,  t m 2  < p 2  <!m2)  (11) 

Kf c ,\K. (12) 

and f such that 

Here, as usual, K denotes thelnter iorsf  K. Having made such a choice, one can 
easily check that (11) implies c p : ( p ) = c p i ( p )  for all A > O  and all p~{O}uM,u V,. 
Hence, by ( 2 )  and lemma 4, again, we have 

V(A, O)O=B(cp:)R for all A > 0. (13) 

2 ( c p : ) * ~ ( c p : ) n ~ ~ ( { p ~ i ~ ~ : p ~ < m ~ } ) ~  

Moreover, applying lemma 4 to the special case & = O', A = AM shows that 

and therefore, by ( 2 )  and (4), 

&cp;)*&p;)i-lEx: for all A > O .  

t As usual, we denote by Ip the Fourier transform 

Ip(p)=(2n)- '  dxq(x)exp(ipx)  

of cp and by supp 4 the support of the function 4: 
J 

supp 4 = { p  E R4: i ( p )  # 0). 
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With (12), lemma 1, AL7 and (13) weconclude tha tdA =d(q: )  is a (AK, I;*) sequence. 
By (lo),  AL1, AL5 and the invariance of n we see that BA = U ( A ,  0) - 'd(q~; ,~)U(A,  0) 
is a (K, Z) sequence with limA,m BAn= 0. Since I; was allowed to be any space-like 
hyperplane with K n X e {0}, this proves the lemma. 

The K-approachable states form a subset of the linear manifold 2 defined as 
follows. 

Definition 5. By 2' we denote the set of all @ E  R for which there exists a sequence 
of operators BA €@(rW4) ,  asymptotically localised in UA(0) ,  with B,+n = @. 

A + C C  Without loss of generality we may assume 

2 C D  (14) 

since the field A(x) could be extended to the linear span of 2 u D  otherwise. Then, 
as a simple consequence of AL3, AL6, Schwarz's inequality and the corollary, we 
have the following lemma, indicating interesting localisation properties of K-approach- 
able states (cf Knight 1961). 

Lemma 6. Let K be a closed cone, let @E &4 be K-approachable, let I; be a space-like 
plane with X n K e {0}, and let 0 be space-like with respect to some neighbourhood 
of ZnK. Then 

holds for every sequence of 9(R4)  operators AA asymptotically localised in AO. 

5. Asymptotic condition and its evaluation 

We are now in the position to give a rigorous mathematical formulation of the physical 
characterisation of Q1 0, Q2, described qualitatively in § 2. 

Asymptotic condition. Let K1, K 2  be closed cones contained in the closed future 
(respectively past) light cone with K1 n K2 = {0}, let I; be a space-like hyperplane with 
K j  n I; e {0} for j = 1,2,  and let 6 be an open subset of R4 space-like with respect to 
some neighbourhood of K2 n Z. Finally, let Qj E Vout,,,,@ be Kj-approachable for 
j = 1,2.  Then a1 0, Q2 should fulfil the following two conditions. 

ACl. @ 1 0 + @ 2 ~ D .  

A C2. ( 0 1  0, @21AA@10* @z) (@IIAA@I) (@~I@~)  

if the @(R4) operators AA are asymptotically localised in AO. 

Remarks. 
(i) The technical assumption AC1 could be circumvented by the use of bounded 

observables (cf Araki and Haag 1967). 
(ii) Condition AC2 is physically motivated only for those A ,  which are restrictions 

of self-adjoint operators to D. Actually, we need not worry about that, since we shall 
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use AC2 only for sequences of positive symmetric operators AA, which are known to 
have self-adjoint extensions (Friedrichs 1934). 

(iii) Putting AA = 1 1  D in AC2 and recalling ALO we get ))@1 0, 0211 = ))@1(1 . 11@211 

directly. 
According to (6) and (7) we have 

RO* @ =  @@* a=@ for all @ E v,,, ( i n ) ~ o .  (15) 

Thus, by lemma 6 ,  the asymptotic condition is fulfilled for the special case = SZ (or 
a2 = 0). If neither O1 nor @2 is a multiple of 0, the asymptotic condition will be 
used to determine 01 0, @2. 

Theorem. There is a unique isometric mapping V,,, (respectively Vi,) from X o  into 
2 fulfilling (1) and (6) and such that the asymptotic condition holds for the product 
0, (respectively 0-) defined by (7). For this product 0, the following statement is 
true: If K1,  K 2 ,  2, O1, (P2 are as considered in the asymptotic condition, and if { B j , A } A > O  

are (Kj ,  C )  sequences with 

@, = lim Bj,An for j = 1 , 2  (16) 
A -CO 

then 

Proof. Let Xz denote the set of all n-particle state vectors of the form @'= 
@: 0,. . .Os 0: for which there are pair-wise disjoint closed subsets A I ,  . . . , A, of M ,  
with 

0: E (E(A,)D) n B(rw4))n 
and 

We shall prove the theorem in six steps. In the first step we assume existence of an 
isometric mapping Vout(in) from 2' into 2 fulfilling ( l ) ,  (6) and the asymptotic 
condition. We then derive 

(18) 

E X : ,  where the {B:A}A,O are (K:, I*) sequences according to lemma 

Vout(in)@o = lim B1.A. 0 . . B;,,SZ 
A+m 

for n E N and 
5 with 

and 

KP T?K: ={O} for j # k. 
Since X: U (UncN X f )  is total in %', this determines Vout(in) completely. In the second 
step, we prove the existence of an isometric operator fulfilling (6) and (18). In the 
third step, every isometric operator Vout(in) fulfilling (6) and (18) is shown to fulfil 
(17) for Z=C,. In the fourth step, we prove the right-hand side in (17) to be 
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independent of the special choice for Z and the sequences {Bj,A}A>o. In the fifth step 
we show that every isometric operator Vout(in) fulfilling (6) and (17) fulfils (1). 
Finally, in the sixth step, we prove that O,, as defined by (7), fulfils the asymptotic 
condition if Vout(in) fulfils (17). 

Step 1.  Let Vout(in) be an isometric mapping from into 2' fulfilling ( l ) ,  (6) and 
the asymptotic condition. Let Kj, Z, be as required for (17). In order to prove 
(18), it is clearly sufficient, by lemmas 3 and 4, to show (17) for the special case that 
there are four-momenta p j  with 

@ j  E E(Um/S(Pj))D 
for j = 1,2 .  

Choose some S E (0, m / 5 )  and test functions cpj  E Y(R4) with 

for all cp E SP(R')). Since 

dxcp(x)cpl(x1-x)cp2(~z-x)=O 

if supp (p' n (supp 4 1 + supp 4 2 )  = 0, and since S could be chosen arbitrarily small, we 
conclude with (20) that 

(22) @I 0, @2 E E ( U m / ~ ( p l )  + U m / s ( P z ) ) 2 ' *  
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By W7 and invariance of R we have 

Bj,A(cpj)fi= I dx cpj(x)U(x)Bj,An 

for j = 1,2.  Therefore, since 5 dx cpi(x)U(x) is a bounded operator, we may conclude 
with (16) and (21) that 

Bj,A (cpj)R ATm @j (23) 

f o r i  = 1,2.  Applying lemma 4 twice, we get 

Bj,A((cPj)*Bj,A(Vj)fl =B:A(cPT)Bj,A(Pj)R 
E E(supp c p j  - supp @j)X 

By (20) and the spectrum condition (2), this implies 

Bj,A(cpj)*Bj,A(cpj)n = (n(Bj,A(cpj)*Bj.A(cpj)n)n. 

Recalling (22), by similar arguments we get 

~l,A((Pl)*~Z,A(((PZ)*@l 0, @Z = (RIBl,A(cpl)*B2,*(cPZ)*@l 0, @2>a. (25) 

Let us exclude the trivial case that @I or @z is a multiple of R, in which (17) and 
(15) are clearly equivalent. Then (19) and the spectrum condition imply p 1 , p 2 ~  
Um/,(V+\Um/~(0)), V ,  denoting the open future light cone. By (20), lemma 4 and 
(2), this implies 

(26) Bj,A(qj)*R =B:A (cpT )R = O 
for j = 1,2 .  Now, let us consider arbitrary complex numbers j1,32 and define 

One can easily prove that, for arbitrary E > 0, 
UEA(Kj n AX). From (23) and (26) we get 

is also asymptotically localised in 

Bj,An A-rm @; for j = 1,2.  (29) 

(B;,,)*B;,,RE fo ra l lA>Oand j=1 ,2 .  (30) 

From (23), (24) and (26), on the other hand, we get 

Summarising, we see also @; to be Kj-approachable. Therefore, by AL2 and AL3, 
we may apply the asymptotic condition to get 
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By (29), (30), AL3, AL6 and Schwarz's inequality we see the right-hand side to 
converge rapidly to zero. By symmetry of 0, we get a similar result for Bi,A replaced 
by B4.A. Thus: 

Hence, by AL3, AL6 and Schwarz's inequality, again, we also have 

Since, by (15) and (27), 

a; 0, @; = @lo, @2 + 32% + 31@2 + j132i2, (33) 
one can easily check, using (23)-(26), (28), AL3, AL6, Schwarz's inequality and the 
corollary, that 

B;T,,B;:~O; O,@; i= (~IIB;T,B;T,,O; 0, @;)a. 
A-w 

Therefore, by (32), AL3, AL6, Schwarz's inequality, the corollary and lemma 3, we 
see that there must be a complex number p = p ( 3 1 , 3 2 )  with 

P B ~ , A B ; , A ~  z @; 0, (34) 
A-w 

With (23), (27) and (28) this implies 

P(O,O)(@l+ 01 O* Q 2 )  = P ( 0 ,  o m  0, ( @ 2  + 0) 

= P ( o ,  o ) P ( o ,  1) lim Bi,~(cpl)(l+B2.~((P2))S1 
A-w 

= P ( 0 , O ) P  (0, 1)Ol + P  (0 ,  1 ) @ 1 0 *  0 2 .  (35) 
By (341, (231, (26) and the corollary, we see that (Q11O1 0, Q2) = 0,  hence (35) implies 
p(0 ,  1) = p(0 ,O)  = 1. Since, applying now familiar arguments, we have 

this proves (17) for the special case (19). 

Step 2. Using the corollary, one can easily check the right-hand side of (18) to be 
independent of the special choice of the sequences {BlqA}A>o, existence of the limit 
being guaranteed by lemma 3. Therefore, by lemma 5 ,  we may define Vout(inl on JV: 
by (18) for n = 2 , 3 , .  . . . On the other hand, by well-exercised reasoning, we can 
easily prove that (18) and (6 )  imply 

( vout ( i n , ~ ' I  v o u t  (in]*') = (@'I 9') 
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for Q0, 9' E Xg U R? U (Unzl Non), ( I ) denoting the inner product of Xo. Therefore 
Vout(in), as defined by (6) and (18), has an isometric extension to all of e. 
Step 3. Let Vout(in) be an isometric mapping from into X fulfilling (6) and (18). 
Moreover, let Ki, Z, Qi and {Bj,,+}A>o be as required for (17) and consider the special 
case Z = 2,. We have to prove 

(36) 

for arbitrary E > 0. Let us first consider the special case that there is a four-momentum 
p 2  with 

11% 0, @2 - lim Bl,AB2,Anll< E 
.k+X 

E ( U ~ / S ( P ~ ) ) D -  (37) 

Denote by N: (K), K c R4, the set of all 

CD = Vout(in)(Q? 0 s  * - 0 s  E Vout (inlXI1 

with @;EE(M, n (K U -K))D for j = 1 , .  . . , n. Using (16), (18) and our standard 
techniques, we easily see that Oi is in the closed linear span of %'E U (UnEN N :  (ICj)).  
Therefore, thanks to isometry of Vout(in), we may choose from the linear span of 
%$ U (UneN N: (K1)) and 9 2  from the linear span of %$ U ((U,,, N:  (K2))  n 
E ( U ~ / S ( P ~ ) ) D )  such that 

IJYl 0, 9 2  - @lo* @211< E / 2 .  

Similarly, using (18) (respectively (6)) and isometry of Vout(in) we easily derive 

1191 0, 9 2  - lim B1,AB2,An(12 
A - x  

= 1191 0, 92112 + (@11@1)(@21@2) - 2 R ~ ( ( * I I @ I ) ( ~ ~ I W )  
= 1\91 0, 9 2  - @lo, a2112 < (&/2)2. 

By the triangle inequality, this implies (36) for the special case (37). 

more general case: 
Exploiting the linear dependence of @10*(D2 on Q2 we easily get (17) for the 

@2 E E(A)D A compact. (38) 
The general case, finally, may be reduced to (38) as follows: By lemma 4, we have 

A - -  lim B ~ . A B ~ , A ( v V ) ~ ~ = @ ~  0, (J ~ X V ~ ( X ) U ( X ) @ Z )  

for & ~9(iW~), since (17) is already proved for the case (38). Therefore, thanks to 
(7) and isometry of Vour(in), limA+x Bl,AB2,A(&)a tends to @I 0, @2 for v +a, if 
( p y ( x )  + S ( x )  for Y + a. On the other hand, we easily derive in our standard way 

2 

im Bl,A(B2.A - B 2 , A ( ~ ~ ) ) ~ ~ ~ 2 = I I ~ l I 1 2 ~ ~ @ 2 -  J & ~ v ( x ) u ( x ) @ 2 1 1  * 

Thus, in the limit v + 00, we get (17) for the general case with Z = 2,. 

Step 4. Let Kj, aj, B and {Bj,A}A>o be as required for (17). Let Z' be another space-like 
hyperplane intersecting the future (respectively past) light cone, and let { B j . A } A > o  be 
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(Ki, X') sequences with 

Qi = lim Bj,,R for j = 1,2 .  (39) 
A -m 

We have to show that 

Obviously, since the Qi are Kj-approachable, it is sufficient to prove (40) under the 
additional assumptions 

K1 n Z' X K z n  X and K 1  n Z X K 2 n Z ' .  

In this case, we may apply our standard techniques once again. 
Due to condition (i) of definition 3 and the corollary we have 

On the other hand, due to AL3, AL6, Schwarz's inequality and condition (ii) of 
definition 3, we have 

and 

Summarising, we get (40). 

Step 5. Let Vout(in) be an isometric mapping from X o  into X for which (6) and (17) 
hold, 0, being defined by (7). We have to prove (1). Since by (15) and lemmas 3-5, 
the set of all Ql 0, QZ with 01, Q2 as considered in the asymptotic condition is total 
in Vout(in)Xo, it is sufficient to show that 

(41) U(A,  a)(@10* Q z ) = ( U ( A ,  ~)QI) 0, (U(A,  a)Qz) 

for such Ql, (P2 and for all (A, a )  E 91, 
By assumption, there are cones K1, K 2  with K1 n K2 = {0} and (Kj, Z,) sequences 

{ B j , A } A > O  with Qi = limA-m Bj,AR for j = 1,2 .  Then, by AL1 and invariance of R, the 
operators Bj,A = U ( A ,  u)Bj,AU(A, a)-' form (AKi, AX,) sequences with @; = 
U ( A ,  a)Qi = limA+m Bl,AR for arbitrary (A, a )  E S I  and j = 1,2 .  Thus, we may apply 
(17) to Kj = AKi, Z' = AX, @; and BIA to obtain 

By (17) and continuity of U(A,  a )  this implies (41). 

Step 6. Let 0, fulfil (17), and let Ki, Z, 0, Qj and AA be as considered in the asymptotic 
condition. We have to prove that 

(42) 

To this end, let us choose (Kj, Z) sequences {Bj ,A}A>o with Qj = limA,m Bj,AR and apply 
standard arguments. 

(@I 0, Q21AAQi 0, @z) A = +m (@IIAA@I)(@ZIQZ). 
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Exploiting condition (iii) of definition 3 for B2,A in connection with AL3, AL6 and 
Schwarz’s inequality, we conclude: 

(@I 0, @zIAA@i 0, @z) A+W (~~BZAAAB~,A~)(~\BT,AB~,A~). 

Recalling B j , A n  = Oj, we finally get (42) by AL3, AL6 and Schwarz’s inequality, 
A-CO 

again. 

Needless to say, iterating (17) we get the Haag-Ruelle-Hepp scattering theory. 

6. Conclusions 

Our results can be summarised as follows: Consider a relativistic quantum theory on 
the Hilbert space X with continuous unitary representation U(A, a )  of 9’; fulfilling 
the spectrum condition (2). Let @(R4) be a * algebra of operators in X with respect 
to which E({O})X is cyclic. Then a scattering theory is fixed, via the asymptotic 
condition of 5 5 ,  by any notion of asymptotic localisation of sequences of @(Rs) 
operators, fulfilling the corollary and ALO-AL7. 

In a sloppy way, we may conclude that the S-matrix of a relativistic quantum 
theory with short-range interaction depends only on the rough localisation properties 
of observables. 

Given X and V(A, a ) ,  we may always choose a notion of asymptotic localisation, 
in agreement with the corollary and ALO-AL7, for which the S-matrix becomes trivial. 
Thus, the crucial question is to find a physically justified notion of asymptotic 
localisation. The use of a concrete field theory is just to provide this information. 

A similar view on field theory was expressed by Haag (1970), relying on the 
physical relevance of the Haag-Ruelle scattering formalism. The point of the present 
paper is that we derived this formalism from considerations concerning localisation 
properties of observables and states. 

The analysis could have been simplified to some extent by working with bounded 
observables. Working with smeared field operators, however, has the advantage that 
the methods are also applicable to non-localisable fields (Liicke 1978). Let us finally 
note that the methods are also easily adjustable to non-relativistic quantum field 
theories (cf Hepp 1965, Sandhas 1966). 
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